2,168 research outputs found

    Interface driven magnetoelectric effects in granular CrO2

    Full text link
    Antiferromagnetic and magnetoelectric Cr2O3-surfaces strongly affect the electronic properties in half metallic CrO2. We show the presence of a Cr2O3 surface layer on CrO3 grains by high-resolution transmission electron microscopy. The effect of these surface layers is demonstrated by measurements of the temperature variation of the magnetoelectric susceptibility. A major observation is a sign change at about 100 K followed by a monotonic rise as a function of temperature. These electric field induced moments in CrO3 are correlated with the magnetoelectric susceptibility of pure Cr2O3. This study indicates that it is important to take into account the magnetoelectric character of thin surface layers of Cr2O3 in granular CrO2 for better understanding the transport mechanism in this system. The observation of a finite magnetoelectric susceptibility near room temperature may find utility in device applications.Comment: Figure 1 with strongly reduced resolutio

    How varying CD4 criteria for treatment initiation was associated with mortality of HIV-patients? A retrospective analysis of electronic health records from Andhra Pradesh, India

    Get PDF
    Background HIV treatment and care services were scaled up in 2007 in India with objective to increase HIV-care coverage. CD4 count based criteria was mainly used for treatment initiation with increasing threshold in later years. Therefore, this paper aimed to evaluate the survival by varying CD4 criteria for antiretroviral treatment (ART) initiation among of HIV-positive patients, and independent factors associated with the mortality. Methods This retrospective cohort study included 127 949 HIV-positive patients aged ≥15 years, who initiated ART between 2007 and 2013 in Andhra Pradesh state, India. The patient’s demographic and clinical characteristics were extracted from the patient’s health records from electronic Computerized Management Information System Software (CMIS). Incidence of mortality/100 person-years was calculated for CD4 and treatment initiation categories. Kaplan-Meier and multivariable Cox-regression analyses were used to explore the association. Results Median CD4 count was 172 (inter-quartile range (IQR) = 102-240) at the time of treatment initiation, and 19.3% of them had ≤ 100 CD4 count. Incidence of mortality for the period 2007-08 (CD4 ≤ 200 cells/mm3) was 8.5/100 person-years compared to 6.4/100 person-years at risk for the period 2012 onwards (CD4 ≤ 350 cells/mm3). Earlier thresholds for treatment initiation showed higher risk of mortality (2007-08 (CD4 ≤ 200 cells/mm3), adjusted hazard ratio (HR): 1.86, 95% confidence interval (CI): 1.68-2.07; 2009-11 (CD4 ≤ 250 cells/mm3), HR = 1.67, 95% CI = 1.51-1.85) compared to 2012 onwards (CD4 ≤ 350 cells/mm3) criteria for treatment initiation. Conclusions Increasing CD4 threshold for treatment initiation over time was independently associated with lower risk of mortality. More efforts are required to detect and treat early, monitoring of follow-ups, promote health education to improve ART adherence, and provide supportive environment that encourages HIV-infected patients to disclose their HIV status in confidence

    Development of a heating reactor for a continuous flow-through application in urea measurement

    Get PDF
    In most biochemical analyses, a flow-through heating arrangement is needed to reduce the reaction time or maintain a constant temperature. A rectangular reactor is described that is constructed of aluminium, is hollow inside and is filled with silicone oil. The glass coil through which the solution flows is immersed in the silicone oil. The heater, a Peltier-effect heat pump, on one side and the temperature sensor on the other side of the reactor body are embedded for heating and temperature control. The brief performance evaluation of the reactor is discussed by measuring the absorbance of urea concentration at different temperatures

    Selective substitution in orbital domains of a low doped manganite : an investigation from Griffiths phenomenon and modification of glassy features

    Full text link
    An effort is made to study the contrast in magnetic behavior resulting from minimal disorder introduced by substitution of 2.5% Ga or Al in Mn-site of La0.9{_{0.9}}Sr0.1_{0.1}MnO3{_3}. It is considered that Ga or Al selectively creates disorder within the orbital domains or on its walls, causing enhancement of Griffiths phase (GP) singularity for the former and disappearance of it in the later case. It is shown that Ga replaces Mn3+^{3+} which is considered to be concentrated within the domains, whereas Al replaces Mn4+^{4+} which is segregated on the hole-rich walls, without causing any significant effect on structure or ferromagnetic transition temperatures. Thus, it is presumed that the effect of disorder created by Ga extend across the bulk of the domain having correlation over similar length-scale resulting in enhancement of GP phenomenon. On the contrary, effect of disorder created by Al remains restricted to the walls resulting in the modification of the dynamics arising from the domain walls and suppresses the GP. Moreover contrasting features are observed in the low temperature region of the compounds; a re-entrant spin glass like behavior is observed in the Ga doped sample, while the observed characteristics for the Al doped sample is ascribed only to modified domain wall dynamics with the absence of any glassy phase. Distinctive features in third order susceptibility measurements reveals that the magnetic ground state of the entire series comprises of orbital domain states. These observations bring out the role of the nature of disorder on GP phenomenon and also reconfirms the character of self-organization in low-doped manganites

    Formation of finite antiferromagnetic clusters and the effect of electronic phase separation in Pr{_0.5}Ca{_0.5}Mn{_0.975}Al{_0.025}O{_3}

    Full text link
    We report the first experimental evidence of a magnetic phase arising due to the thermal blocking of antiferromagnetic clusters in the weakened charge and orbital ordered system Pr{_0.5}Ca{_0.5}Mn{_0.975}Al{_0.025}O{_3}. The third order susceptibility (\chi_3) is used to differentiate this transition from a spin or cluster glass like freezing mechanism. These clusters are found to be mesoscopic and robust to electronic phase separation which only enriches the antiphase domain walls with holes at the cost of the bulk, without changing the size of these clusters. This implies that Al substitution provides sufficient disorder to quench the length scales of the striped phases.Comment: 4 Post Script Figure

    Phase separation and the effect of quenched disorder in Pr0.5Sr0.5MnO3Pr_{0.5}Sr_{0.5}MnO_3

    Full text link
    The nature of phase separation in Pr0.5Sr0.5MnO3Pr_{0.5}Sr_{0.5}MnO_3 has been probed by linear as well as nonlinear magnetic susceptibilities and resistivity measurements across the 2nd order paramagnetic to ferromagnetic transition (TCT_C) and 1st order ferromagnetic to antiferromagnetic transition (TNT_N). We found that the ferromagnetic (metallic) clusters, which form with the onset of long-range order in the system at TCT_C, continuously decrease their size with the decrease in temperature and coexist with non-ferromagnetic (insulating) clusters. These non-ferromagnetic clusters are identified to be antiferromagnetic. Significantly, it is shown that they do not arise because of the superheating effect of the lower temperature 1st order transition. Thus reveals unique phase coexistence in a manganite around half-doping encompassing two long-range order transitions. Both the ferromagnetic and antiferromagnetic clusters form at TCT_C and persist much below TNT_N. Substitution of quenched disorder (Ga) at Mn-site promotes antiferromagnetism at the cost of ferromagnetism without adding any magnetic interaction or introducing any significant lattice distortion. Moreover, increase in disorder decreases the ferromagnetic cluster size and with 7.5% Ga substitution clusters size reduces to the single domain limit. Yet, all the samples show significant short-range ferromagnetic interaction much above TCT_C. Resistivity measurements also reveal the novel phase coexistence identified from the magnetic measurements. It is significant that, increase in disorder up to 7.5% increases the resistivity of the low temperature antiferromagnetic phase by about four orders

    Thermal relaxation of magnetic clusters in amorphous Hf_{57}Fe_{43} alloy

    Full text link
    The magnetization processes in binary magnetic/nonmagnetic amorphous alloy Hf_{57}Fe_{43} are investigated by the detailed measurements of magnetic hysteresis loops, temperature dependence of magnetization, relaxation of magnetization and magnetic ac susceptibility, including a nonlinear term. Blocking of magnetic moments at lower temperatures is accompanied with the slow relaxation of magnetization and magnetic hysteresis loops. All of the observed properties are explained with the superparamagnetic behaviour of the single domain magnetic clusters inside the nonmagnetic host, their blocking by the anisotropy barriers and thermal fluctuation over the barriers accompanied by relaxation of magnetization. From magnetic viscosity analysis based on thermal relaxation over the anisotropy barriers it is found out that magnetic clusters occupy the characteristic volume from 25 up to 200 nm3 . The validity of the superparamagnetic model of Hf_{57}Fe_{43} is based on the concentration of iron in the Hf_{100-x}Fe_{43} system that is just below the threshold for the long range magnetic ordering. This work throws more light on magnetic behaviour of other amorphous alloys, too
    • …
    corecore